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Several variants of the modal interpretation of quantum mechanics have been 
introduced and discussed in recent years. In this paper we present a study of the 
mathematical foundations of such an interpretation in the framework of the 
quantum theory of measurement. 

1. I N T R O D U C T I O N  

The empirical content of quantum mechanics is in the measurement 
outcome probabilities it predicts. The irreducible nature of these probabilities 
makes it difficult to develop a realistic interpretation of quantum mechanics, 
an interpretation which refers to individual objects and their properties. Recent 
advances in ultrahigh technology have made it obvious, however, that such 
an interpretation i s - - to  say the least--desirable. Indeed, extremely controlled 
experimentation on individual objects, such as atoms, neutrons, electrons, 
and photons, is becoming a daily enterprise in experimental quantum physics. 

There is now a growing literature on the so-called modal interpretations 
of quantum mechanics, several variants of which have already been put 
forward, for instance, in Bub (1992, 1994), Dieks (1989, 1994), Healey 
(1989), Kochen (1985), and van Fraassen (1991). They all aim to go beyond 
the purely statistical level of the description to provide a language which 
would come closer to the present-day experimental practice. This paper is 
devoted to a study of the measurement-theoretic content of these interpreta- 
tions. (Further details and supplementary aspects are contained in the quoted 
papers of the authors). 
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We begin in Section 2 with a brief review of some results on the problem 
of decomposability of mixed states into pure states and we present some 
facts concerning the ranges of states. We recall also the polar decomposition 
of an entangled vector state. In Section 3 these results are applied to define 
some sets of properties which can be and have been taken as the basis of 
formulating the corresponding modal interpretations of quantum mechanics. 
In Section 4 we formulate the conditions these interpretations posed on 
measurements, and in Section 5 we present a study of them within the theory 
of measurement. In this view the modal interpretations in question appear 
as particular specifications of the measurement process within the minimal 
interpretation of quantum mechanics. 

The framework of this paper is the ordinary Hilbert space formulation 
of quantum mechanics, in which the description of a physical system is based 
on a complex separable Hilbert space ~ ,  with the inner product (. I-). In 
their most common representation states and observables of the system are 
represented as density operators T and as self-adjoint operators A acting in 
~ ,  respectively. If A = fR a dPZ(a) is the spectral decomposition of A, then 
the probability measure defined by this observable and a state T obtains the 
explicit form pA(X) := tr[TpA(x)], where pA(X) is the spectral projection of 
A associated with the (Borel) subset X of the real line R. In the minimal 
interpretation, these numbers are probabilities for measurement outcomes: 
pA(X) is the probability that a measurement of the observable A leads to a 
result in the set X when performed on the system in a state T. We recall 
further that for vector states T = P[q0], generated by the unit vectors q~, these 
probabilities obtain the simple form pZ(X) = (~IpA(X)q~). 

2. PROPERTIES OF STATES 

The decomposability properties of states as well as the properties of 
their ranges lead to several sets of properties which are at the heart of some 
of the modal interpretations of quantum mechanics. Therefore, we shall start 
by reviewing the basic properties of states. 

2.1. Components of Mixed States 

It is a basic fact of quantum mechanics that any state can be decomposed 
into vector states, e.g., 

but such a decomposition is never unique unless the state itself is a vector 
state. A given vector state P[q~] is a convex component of a state T whenever 
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T = hP[to] + (1 - h)T' (2) 

for some weight 0 # h ----- 1 and for some state T'. It is known that this is 
the case exactly when to is in the range of the square root of T, that is, to 
ran(T 1/2) := {TI/2to: to E 7Q (Hadjisavvas, 198l). 

A decomposition (1) of a mixed state T into vector states P[qli] is 
irreducible if for each i, the vector t]J i does not belong to the closure of the 
linear span of the other vectors {t~l . . . . .  t~i-i, tbi+l . . . .  }, that is, 

for all i, tbi ~ lin{~l . . . . .  tbi-l, ~i+l . . . .  } (3) 

We say that a vector state P[to] is an irreducible convex component of T if 
it participates in an irreducible decomposition of T. Again, it is known 
(Hadjisavvas, 1981) that this is the case exactly when to is in the range of 
T, that is, tO s ran(T) := {TtO: tO E ~} .  Clearly, if the decomposition (1) is 
orthogonal, that is, (t~ I +j) = ~j ,  then it is also irreducible, but not necessarily 
the other way round. 

2.2. The Polar Decomposition 

The polar decomposition of an entangled vector state has a special role 
in some variants of the modal interpretation. Though this decomposition is 
well known, we need to recall it here. Therefore, let �9 be a unit vector of 
the tensor product Hilbert space ~ | ~s and let {toi} and {d~i} be any 
orthonormal bases of ~ and ~ ,  respectively. Then 

(4a) 

and the partial traces (reduced states) T(~)  and W(~') of P [~ ]  over ~ and 
~ ,  respectively, obtain the decompositions into rank-one operators, 

w(,i,) = E 

(4b) 

(4c) 

where, for short, cij = (q~i | +/1~). The vector �9 can be identified with a 
bounded linear map F(~) :  ~s --> ~ ,  which has the decomposition F(W) = 
"2 eijl toi)(+/I in terms of the given bases {toi} and {qbi}. Let F ( ~ )  = UV be 
its polar decomposition (Reed and Simon, 1980), where ~ 7s ~ 7~ is a 
positive (compact) operator with the spectral structure V = E ,~/pV, ~ / >  
O, E vi = 1, and U: ~f --+ ~ is a partial isometry, with ker(U)" = r-~(V). 
Therefore, F ( ~ )  = Z ~iupVi ,  and if, for each i, {~Jij}j is an orthonormal 
basis of pv(~s then 
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F(qO = E ~ i  UPv 

= E ~ i  E UP[t~iJ] = E ~i i  E[uoii)(q,~jl (5) 
i j i j 

where (U+iil Uteri, ) = ~i.i'. Hence, 

= ~ ~ Ut~i.i Q +ii (6a) 

T(~) = ~ viP[UO(i] = ~ viP/r ('v) (6b) 

W(~) = ~ v~P[Oi;] = ~ v~pVi = ~ v~P w(*) (6c) 

Clearly, the representation (6a) of the polar decomposition of q~ depends on 
the choice of the vectors ~ i ,  being unique exactly when the eigenvalues of 
V are nondegenerate. 

2.3. Ranges of States 

For any state T, the following set inclusions hold true: 

ran(T) C ran(T J/2) C tSfi(T 1/2) = r--~(T) (7) 

where, for instance, r ~ ( T  ~/2) denotes the closure of the range of the square 
root of T. These set inclusions are equalities if and only if the range of T j/2 
is closed. This is the case exactly when the range of T is finite dimensional. 

The subspace inclusions (7) can be used to order states. Indeed, for any 
two states T1 and T2 we define 

TI < .... T2 iff ran(Tl) C r-~(T2) (8a) 

TI <rsq T2 iff ran(TV 2) C ran(T~/2) (Sb) 

Tl <ran T2 iff ran(T0 C ran(T2) (8c) 

where the abbreviations cran, rsq, and ran stand for the closure of the range, 
the range of the square root, and the range, respectively, which refer to the 
properties used to define these orders. Clearly, any of these relations defines 
a preorder on the set of states, the vector states being minimal with respect 
to each of them. 

The spectral decompositions Ti = ~ tl,iP/r ~ and T2 = ~ t2,iP/r 2 lead still 
to another ordering of states: 

TI <sd T2 iff for any i, p/rl ___ pr2, for somej  (9) 

where sd stands for the spectral decomposition. Again, the vector states are 
minimal in this order, and P[q~] <sd T iff q~ ~ ran(P/r) for some i. 
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3. SETS OF P R O P E R T I E S  

Let ~ ' (~)  denote the set of projection operators on ~ .  Any state T is 
associated with two projection operators, its support projection PT, and the 
complement of PT, AfT = I -- PT. We recall that PT is the smallest projection 
operator such that T = TPT = PTT, whereas NT is the largest projection for 
which NTT = TNT = O. 

For any state T we define the following three basic sets: 

~l(T)  := {P e ~ ( ~ ) :  tr[TP] = 11 

= {P ~ ~ ( ~ ) :  P --> PT} (10) 

D0(T) := {P E ~ ( ~ ) :  tr[TP] = 0} 

= {P E ) ( ~ ) :  P <- NT} (11) 

~ 0 ( T )  := {P ~ ~ ( ~ ) :  tr[TP] @ 0} 

= {P ~ ~ ( ~ ) :  P /x  Nr 4: P} (12) 

If T = P[q~], we write, for instance, ~l(q~) instead of ~l(P[q~]). Using the 
orderings (8) of states, we have, in addition, 

~cran(T) := {P ~ ~ ( ~ ) :  there is a T' <cran T such that P E ~Pl(T')} 

= U{~Pl(q~): q~ ~ r--~(T)} (13a) 

~rsq(T) := {P E ~ ( ~ ) :  there is a T' <rsq Tsuch that P ~ ~ l (T ' )}  

= U{~l(q~): q~ ~ ran(Tl/2)} (13b) 

~ran(T) := {P E ~ ( ~ ) :  there is a T' <ran T such that P E ~I(T ' )}  

= U{~Pl(q~): q~ c ran(T)} (13c) 

Similarly, the spectral ordering (10) allows one to define 

~ d ( T )  := {P e ~ ( ~ ) :  there is a T'  <sd T such that P e ~PI(T')} 

= U U{~l(q~): q~ E ran(p/T)} (13d) 
i 

Clearly, for any state T, 

~PI(T) C_ ~ d ( T )  C_ ~ran(T) C_ ~Prsq(T) C_ ~ .... (T) _C ~ ,0 (T )  (14) 

On the basis of equation (13a) it is obvious that 

~ I (T)  = ~ . . . .  (T) r T = P[q~] for some unit vector q~ (15) 



1276 Cassinelli and Lahti 

On the other hand, one also proves that 

~cran(T) = ~,0(T)  r P T  = [ (16) 

There are still two further subsets of projection operators which are of 
interest here. They arise from the polar and from an orthogonal decomposition 
of an entangled vector state q~ of a compound system. If F (~ )  = E 

UP v is the polar decomposition of ~ ,  we define 

~pd(~) := U {P ~ ~ ( ~  | ~{): P --> p/r(~,) @ pw(,~)} (17) 
i 

Let q~ = E ~ i  U +ij | ~ij be a vector decomposition of the polar decomposi- 
tion of ~ .  One may then also consider the set ~l,u](qO: = U@l(Ut~i j | 
~ij), which contains the set ~pd('kI)'). Apart from the arbitrariness of this set, 
it is to be noted that for each i, p/r(,) | p W(*) is the smallest projection 
operator which contains all the projection operators E P[UqJ u] | P[t~u], 
varying over the possible orthonormal bases {t~/j }/of  PRO{). Therefore, it 
is the set (17) which shall be used subsequently. Clearly, if the eigenvalues 
vi of W(~) are nondegenerate, then ~'l , i l(~) = ~pd(qO. We note also that 
~f)l(~I f) C ~pd(X[ f)  C ~#0(xI?). 

To introduce the other set, let 

~obj(~) := {P E ~ ( ~  | ~{): PP[~] = P[~]P} 

= ~ r) U ~0(~) (18a) 

If (Ri) is a sequence of mutually orthogonal projection operators such that 
"Z Ri = L we write ~ = ~ Ri~ = ~, I[Ri~][~i, and define 

~ ( Ri) t',lIt" L obj t~:,~ := {P e ~ ( ~  | ~{): PP[~I2" i] = P[tP'i]P for all i} 

= N (~l("tIfi) U ~0(aI/i)) (18b) 
i 

Clearly, (18b) contains (18a) as a special case. By construction, it is obvious 
ub(Ri)[~It~ that the sets "obj t~J  and ~ ' .0(~)  are incomparable. 

In order to appreciate the content of the sets ~I(T), ~0(T), ~ff~e0(T), and 
~int(T), with Int = cran, rsq, ran, sd, pd, obj, we recall, first, that in quantum 
mechanics projection operators are commonly taken to describe properties 
of the system. Clearly, the set ~'~(T) contains properties which the system 
has in state T in the sense of probability one, that is, a measurement of this 
property would show it with certainty. We recall also that a property P is 
objective in a state T if the system has this property or its complement 
property in that state. Accordingly, the set ~'~(T) U ~'0(T) contains properties 
which are objective in the state T, In turn, the set ~ ,0(T)  contains the 
properties which are possible in the sense that their measurement outcome 
probabilities are nonzero. 
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The idea of the modal interpretations is that when a system is in a mixed 
state T or in an entangled state ~ ,  then, in addition to the properties which 
the system has with certainty, it could also have some further properties. The 
specification of these properties is the task of such interpretations. The sets 
~tnt(T) are proposed to do just that. They contain the properties which the 
system could have in state T according to the modal interpretation in question. 
For instance, the set ~cran(T) contains all the properties which are possible 
in the state T, except those which are such that, whenever they are disjoint 
with the support projection Pr  (P/x PT = O), they are not orthogonal to it 
(P ~ Nr). We recall that Pr  is the smallest property that the system has in 
that state. Since any property P which is compatible with Pr  (that is, commutes 
with Pr), is orthogonal to Pr  whenever it is disjoint with Pr, we may say, 
loosely speaking, that the set ~cran(T) contains "all classically possible" 
properties in the state T. This does not mean, however, that the set ~cran(T) 
was Boolean. The other options ~J~int(T) in (13) are further specifications of 
these "classical possibilities," whereas ~pd(T) and ~ I~(T)  are two alternative 
proposals for the sets of possible properties of the (compound) system in (an 
entangled) state T = P[~]. The set ~'obj(~) contains properties which are 

(R j) �9 
objective in the vector state ~ ,  whereas the set ~ob3 (~)  is intended to represent 
the properties which could be objective together with the properties (Ri). 

The Copenhagen variant of the modal interpretation of quantum mechan- 
ics (van Fraassen, 1991) takes the set ~cr~n(T) as its basic ingredient, whereas 
the modal interpretations which rely on the polar decomposition theorem 
have the set ~pa(~), or ~sd(T(~)) and ~sj(W(q~)), as the fundamental one 

ob(Ri){~rr'~ (Kochen, 1985; Dieks, 1989, 1994; Healey, 1989). The set ~ 'obj~J is part 
of the basis of the modal interpretation proposed by Bub (1992, 1994); there 
this set is called the "fan" of the "handles" ~ .  

4. THE MODAL CONDITIONS ON MEASUREMENTS 

The questions of the consistency and physical relevance of the various 
variants of the modal interpretation are most directly discussed in the frame- 
work of the quantum theory of measurement. To do that it is sufficient to 
consider discrete observables. Consider, therefore, an observable A = ~ aiPi. 
To model a measurement of A one usually fixes a measuring apparatus, with 
its Hilbert space ~f, an initial state P[+] of the apparatus, a pointer observable 
Z -~" ~ ziZi,  and a (unitary) measurement coupling U: 3~ @ ~ ---) 3~ ~ ~ .  
If P[q~] is the initial state of the measured system, then P[U(q~ | 4')] is the 
system-apparatus state after the measurement. Denoting the corresponding 
reduced states of the measured system and the measuring apparatus as T(U(q~ 
| qb)) --= T(q~) and W(U(q~ | qb)) ~ W(q~), respectively, we have the following 



1278 Cassinelli and Lahti 

schematic representation of the 
measurement: 

P[~] 

P[+] 

state transformations associated with a 

T(~) 

p~(ai) 4: 0 ~ Z i ~ ~,0(W(~)) (20a) 

p~(ai) 4 : 0  ~ Z i ~ ~cran(W(q~)) (20b) 

pa~(ai) 4= 0 ~ Zi ~ ~rsq(W(q~)) (20c) 

p~(ai) 4 : 0  ~ Zi ~ ~r~n(W(q~)) (20d) 

pA(ai) 4 : 0  ~ Zi ~ ~d(W(q~)) (20e) 

pA(ai) 4:0  ~ I | Z/ ~ ~'pa(U(q~ | qb)) (20f) 

c~ (l| ( If p~(ai) 4 : 0  ~ I | Z~ ~ ~'obj t,-(~P | qb)) (20g) 

We shall study next the implications of these "modal conditions" in a 
special measurement model. 

A minimal requirement for ~ ,  Z, qb, and U to constitute a measurement 
of A is the calibration condition (see, for instance, Busch et al., 1991): 

for any i and q~, ifp~(ai) = 1, thenpZ(~)(zi) = 1 (19a) 

Using the notations of Section 3, we may express the calibration condition 
also as follows: 

for any i and % i fP i  E ~l(q~), then Z,. ~ ~I(W(q~)) (19b) 

The calibration condition is equivalent to the apparently stronger probability 
reproducibility condition: 

for any i and q~, lY~(ai) = pZ(~)(zi) (19c) 

Using the terminology of Section 3, one may say that the basic require- 
ment of a measurement is the following: I f  a measurement of  an observable 
is certain to yield a particular result, then the pointer  observable has the 
corresponding value after the measurement. 

One of the basic questions of the modal interpretations is to find condi- 
tions under which the pointer observable could have the value zi whenever 
the measurement outcome probability for ai is nonzero. Extracting from the 
above quoted papers on the modal interpretations, these conditions read 

P [ ~ |  

g(~) 
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5. THE MINIMAL MEASUREMENT MODEL 

Consider, again, a discrete observable A = "2, aiPi. To determine the 
structure of a measurement (~, Z, qb, U) of A, we assume that the pointer 
observable is minimal. Any choice Z = ~ ziZi =- ~ ziP[qbi] will then do, 
where {qb/} is a basis of ~{7 (the dimension of ~{ is thus fixed to equal the 
number of distinct eigenvalues of A). With that choice all the unitary mappings 
U which make ( ~{7, Z, cb, U) satisfy the calibration condition are completely 
characterized (Beltrametti et al., 1990). To explicate these solutions, we 
assume here--for  notational simplicity only-- that  all the eigenvalues of A 
are nondegenerate: A = ~L aiPi = ~, aiP[~pi], where {q~i} is a complete 
orthonormal set of eigenvectors of A, Acpi : ai~Pi. If (~, Z, qb, /_7) is a 
measurement of A, then 

for each ~Pi, U(~pi | ~b) = 7i (~  dpi (21) 

where 3'i are the unit vectors Yi = Ej (q~; | ~bilU(~pi | qb))~j. On the other 
hand, given any set of unit vectors {y/} of ~ ,  then (21) extends to a unitary 
mapping U such that (~{, Z, qb, U) is a measurement of A. If P[~p] is the 
initial state of the system, then the final states of the compound system, the 
measured system, and the apparatus are 

U(~ (~ ~)) : s (r @ (be (22a) 

V(m) = I(,.plw,)12P[w,] (22b) 

W(~p) = s <~/[~p><~pl~p,>(',/il~,>l+:><+,[ (22c) 

We stress that in the case of a discrete observable with nondegenerate 
eigenvalues the calibration condition poses no restrictions on the unit vectors 
Yi which define the measurement coupling U. 

Consider a measurement of A given by the sequence of unit vectors { Yi}. 
The minimal condition (19) on measurement leaves the set {'Yi} completely 
arbitrary. But, clearly, 

pa~(ai) =/= 0 =::> P[doi ] e ~r (23) 

Further, it is immediate to observe that for any P ~ ~'(7{), 

I | P e "~fobj t Ul, q0 @ (~))) r P e N(~)I(~)/) [._J ~0((J)i)) (24) 
i 

where, for short, we use the supindex (~bi) instead of (I | P[cbi]). This shows, 
in particular, that I | P[qbi] e @(o+bj)(UU | (b)) whenever pa(ai) 4= O, that is, 
the modal requirement (20g) is always fulfilled. 

No further conclusions on the validity of the modal conditions (21) can, 
in general, be drawn. 
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To discuss the solutions of the conditions (20) within the minimal mea- 
surement model, we shall assume that the vectors ~/i are such that lin{',/L, 
. . . .  ~/i . . . .  } = 7f. This assumption simplifies the discussion, but implies, 
in fact, no loss of generality of our considerations. 

We consider first the case that {',/i} is linearly independent in the algebraic 
sense. By a direct inspection one can see that the linear independence of the 
vectors '~i is necessary for the condition (20b). If 7( is finite dimensional, it 
is also sufficient for that. However, in general, linear independence of the 
vectors ",/; is not enough for the modal conditions (20b)-(20d). Therefore, 
stronger requirements on {"/i} are to be posed. 

The weakest possible "topological" strengthening of the linear indepen- 
dence of {~i} is the gr l inear  independence: for each sequence of complex 
numbers (ai) such that ~ l ail < ~, the condition ~ ai"/i = 0 implies that a i 
= 0 for all i. Then we have P[+i] ~ ~'cra,(T) for each i and % such that 
pA(ai) 4: O, if and only if {"/i} is /r l inearly independent (Cassinelli et aL, 
1994). 

We say that the sequence {'Yi} is irreducible if, for each i, the vector ~i 
is not contained in the set lin { ~l . . . . .  ~i-l, "/i+l . . . .  }. According to Section 
2.1, this is the case exactly when the decomposition T(q~) = E l~(ai)P['yi] is 
irreducible. We then have P[+~] ~ ~r~q(W(q~)) for each i and ~, such that 
pZ~(ai) 4: O, if and only if T(~) = 2~ pm(ai)P[~i] is an irreducible decomposition 
(Cassinelli et al., 1994). 

As a next step, we say that the sequence {~i} has the f initeness property 
M if it is l__inearly independent, and for each i, ~i = Oi -~- ~ j= l , j r  aj~/, for some 

0i e lin{',h . . . . .  "/i-l, 3'i+l . . . .  }• The following result is obtained: P[+i] 
~r~(W(q~)) for each i and % such that pA(ai) 4: O, if and only if {~i} has the 
finiteness property (Cassinelli et al., 1994). 

Finally, we note that if {'y~} is an orthonormal sequence, then the decom- 
positions (22) are just the polar and the spectral ones, in which case the 
conditions (20e) and (20f) are satisfied. Conversely, if either (20e) or (20f) 
is fulfilled for each i and tp, such that p~(ai) 4: 0, then {~i} is orthonormal 
(Lahti, 1990). 

In conclusion, we have arrived at the following characterizations of the 
modal conditions (20) on measurements: 

pA(ai) @ 0 ~ Zi c ~o(W(q~)) r 

pa(ai) 4 :0  ~ I | Zi E )~z~J(U(q~ (~  qb)) r 

pA(ai) 4 :0  ~ Z i e ~cran(W(q~)) r 

pA(ai) 4= 0 ==~ Zi E ~rsq(W(q~)) r 

pA(ai) 4= 0 ~ Zi ~ ~ran(W(q~)) r 

{',//} arbitrary 

{'~/i } arbitrary 

{~/i}/rindependent 

{~/i} irreducible 

{~i} has finiteness 
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pa(ai) ~ 0 ~ Zi E ~P~a(W(q~)) <=* {'yi} orthonormal 

p~(ai) ~ 0 ~ I @ Z i E @Dpd(U(q3 @ (b)) ~ {'Yi} orthonormal 

6. D I S C U S S I O N  

We have studied various sets of  properties ~Plnt(T) which the system 
could have in state T according to the modal interpretation Int. We have 
characterized these sets in the context of  the minimal measurement  model 
where the state in question appears as the entangled state of  the ob jec t -  
apparatus system after the measurement  (T = P[U(q~ @ +)]) or it is the mixed 
state of  the apparatus after the measurement  [T = W(q~)]. From the point of  
view of  the quantum theory o f  measurement  the modal interpretations appear  

j u s t  as f u r ther  specif ications o f  a measurement  process;  apart from Int --- 
obj, they all structure the measurement  beyond the calibration condition. It 
may  be noted that the more liberal the modal interpretation is, in the sense 
of  admitting a bigger set of  properties which the apparatus could have after 
the measurement,  the less restrictive it is from the point of  view of  the 
measurement  theory. 
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